好好学习,天天向上,写范文网欢迎您!
当前位置:首页 > > 综合范文 > 正文

中国烟草物流现状与展望研究及对策[范文模版]3篇

2022-11-06 14:12:19综合范文

  下面是范文网小编分享的中国烟草物流现状与展望研究及对策[范文模版]3篇,供大家赏析。

中国烟草物流现状与展望研究及对策[范文模版]3篇

中国烟草物流现状与展望研究及对策[范文模版]1

  中国农业物流的现状及其对策

  一.农产品流通渠道不畅,物流成本过高,效益低下

  我国农产品流通还处在时间长,消耗大,效率低,效益差的低层次上,流通渠道不畅,物流发展缓慢。农产品的大宗物流一般都经过这样几个主要环节:生产者—产地市场—运输批发商—销地市场—零售商—消费者。当农产品集中上市时,由于物流不畅,加工能力不足导致产销脱节,成本上升。

  二.农业物流技术和管理手段落后,导致农产品损失严重

  物流过程中的保鲜技术对农产品的保值增值尤为重要。鲜活农产品的特点是含水量高,保鲜期短,极易腐烂变质。因此,农业物流对运输效率和流通保鲜条件提出了很高的要求。通过有关资料调查显示,我国水果蔬菜等农副产品在采摘,运输,储存等物流环节上的损失率在25%—30%左右,与发达国家相比损失较大。

  三.农业物流信息系统建设滞后

  农业物流信息滞后主要 一下几个方面:意识硬件建设跟不上。大多数市场没有配备信息设备,致使建设市场信息情报功能未能充分发挥。二是信息资源不能共享。缺乏一个把政府,市场,客户和生产者联系起来的网络,市场供求关系不能快速传递。三是信息资源开发深度不够。前沿性,准确性。权威性较差。

  四.农村物流主体多元化,无序化

  随着改革开放的逐渐深入,我国农业物流主体呈现出多元化发展的特征。从所有制角度看除了商业企业,农业供销社之外,农业物流中的集体,个体,私营,股份制以及外企业发展十分迅速。但同时我国农业物流主体规模小,网络不健全,市场覆盖面较窄。

  加快我国农业物流发展的建议

  通过市场调查和资料分析我的建议是巩固和大力发展农业物流的几个主流发展模式即:

  1.批发市场模式 它的特点是迎合农产品地域性,季节性及消费需求的多样性要求,解决信息不对称问题。

  2.中心批发市场的物流模式 它的特点是土地流转政策改革的实施,节约了交易成本。

  3.农业合作组织模式它的特点是通过行业协会形成规模效应,节约交易成本。

  4.连锁超市模式它的特点是节约终端顾客的交易成本。

  加快我国农业物流发展的对策

  1.合理规划农业物流基地,物流园区,物流中心及配送中心的建设。

  农业物流的基础设施建设应根据农业物流基地的布局,交通运输,通讯等物流基础设施情况以及农业物流的发展状况来确定。

  2.大力发展第三方物流服务,培育与壮大农业物流主体。

  第三方物流具有巨大的社会效益,能将社会上众多的闲杂物流资源进行有效整合,提高

  整体物流效率。通过第三方物流的专业化运作能减少农产品流通中很多不必要的中间环节,降低其流通成本。

  3.扶持新型流通合作组织,提高农产品市场主体的组织化程度。

  大力发展各种类型的农业专业化组织,为农民提供科技,信息,资金,物资和产品销售等服务。以资本为纽带,以市场为导向,通过控股,参股,联合等形式在农村组建一批跨区域,跨部门,跨所有制的大型零售商业集团。做到优势互补,强强联合,形成规模经济优势。

中国烟草物流现状与展望研究及对策[范文模版]2

  转基因苹果研究现状与展望

  摘要: 从转基因苹果受体基因型、选择标记基因、报告基因及外源基因等方面综述了转基因苹果研究现状,着重论述了外源基因在转基因苹果中的应用。同时综合文献提出了苹果转基因研究存在的问题和今后的研究方向。

  关键词: 苹果; 转基因; 基因型; 外源基因;

  Prospect and Research Status of Transgenic Apples

  Abstract: This paper reviewed the present situation of transgenic apples from the genotype of transgenic apples receptors,selective marker gene,reporter gene and exogenous gene and so on,moreover,the application of exogenous gene in transgenic apples were mainly discussed.Meanwhile,problems in the study of transgenic apples and the research direction in the future were put forward by summarizing literature.

  Key words: Apple;Transgenic;Genotype;Exogenous gene

  苹果是世界四大水果之一,是我国第一大水果,在国民经济中占有重要地位。随着社会的发展,培育优良苹果品种已经成为广大消费者的迫切要求。目前,培育出的苹果品种 虽然已有800 多个,但是培育具有综合农艺性状的品种仍然是一大难题。其主要原因是: ①苹果是高度杂合的树种,遗传背景比较复杂,有性杂交后代广泛分离,选育结果难以控 制;②苹果童期(5 ~ 7 年)比较长,育种周期长;③苹果育种工作已有上百年的历史,长期的人为定向选育使苹果品种的遗传性趋于一致,基因型范围越来越窄。以上原因对苹果育种造成诸多不利影响,使培育具有优良综合农艺性状的苹果品种极为困难。20 世纪80 年代发展起来的转基因技术为苹果品种的遗传改良提供了新的技术方法 首先,转基因技术只对个别性状进行改良即可获得理性个体;其次,转基因植株不存在童期问题,可以缩短育种周期;最后,转基因技术可以打破物种界限,极大地丰富基因来源 转基因技术给苹果育种工作展现了良好的前景,笔者就苹果转基因方面的研究进展作一综述。苹果转基因受体基因型

  1989 年 James 等首次获得转基因绿袖苹果,此后,苹果转基因研究迅猛发展 迄今为止,用于苹果转基因研究的受体基因型越来越多,除绿袖外,还包括 M26、元帅、皇家嘎拉、嘎拉、Braeburn、Elstar、乔纳金、富士、辽伏、Marshall、McIntoshM.

  9、M29、粉红佳人(Pinkla-dy)、Jork9 Queen Cox、王林(Orin)、金矮生(Jon-agored)17 个品种。选择标记基因

  转化的植物中存在着转化细胞和未被转化的细胞,它们之间存在着生长竞争,需要插入选择标记基因来选择转化了的细胞以获得转化植株 植物基因工程中常用的选择标记基因主要有两大类: 一类是编码抗生素抗性的基因,如新霉素磷酸转移酶基因Ⅱ(npt II)潮霉素磷酸转移酶基因(hpt)和二氢叶酸还原酶基因(dhfr)等;另一类是编码除草剂抗性的基因,如草丁膦乙酰转移酶基因(bar)在苹果转基因中应用最多的选择标记基因是 nptⅡ,其作用原理是 nptⅡ基因编码新霉素磷酸转移酶,通过酶促磷酸化使氨基糖苷类抗生素失活,从而解除毒性,使转基因植物对卡那霉素 巴龙霉素等氨基糖苷类抗生素产生抗性。报告基因

  报告基因是指其编码产物能够被快速地测定,在转化的早期阶段可以快速检测外源基因是否成功导入受体细胞 组织或器官,并检测其表达活性的一类特殊用途的基因 在苹果转基因研究中,常用的报告基因有新霉素磷酸转移酶基因Ⅱ(nptII)β-葡萄糖醛酸乙酰转移酶基因(gus)胭脂碱合成酶基因(nos)和绿色荧光蛋白基因(gfp)[19 ]等。苹果品种改良基因

  1989 年 James 等首次获得转基因绿袖苹果后,苹果转基因研究迅猛发展,外源基因涉及到改良植物性状的目的基因范围也越来越广 目前苹果改良基因研究有以下几个方向:抗病虫害基因 开花相关基因 矮化植株基因 促进生根基因 抗除草剂基因 耐贮藏基因及调控基因等。

  4,1 抗病基因

  在苹果的遗传转化中,抗病基因研究主要集中在抗火疫病(Erwinia amylovora)方面 与此相关的有Cecropin B、Attacin A、SB-

  37、Shiva-

  1、Attacin E、hrpN、NPR1、MB39 gene、mbr4、等基因 CecropinBAttacin A 和 Attacin E 是从天蚕体内分离出来的细胞溶解酶蛋白;SB-37 Shiva-1 是人工合成的细胞溶解酶类似物 此外还有抗真菌基因β-1,3-葡聚糖酶双价基因、内切几丁质酶基因、stilbene synthase gene、PGIP 以及抗苹果黑星病基因 pinB。

  4,2 抗虫基因

  到目前为止,导入苹果的外源抗虫基因有抗鳞翅类和鞘翅类昆虫的 CpTI 基因、苏云金杆菌毒蛋白基因(Bt)、生物素绑定蛋白基因、CpTI 对于许多害虫都具有抗性,广谱性是其应用于植物基因工程最主要的优点;Bt 是从苏云金杆菌分离出的杀虫结晶蛋白(ICP)基因,ICP 以原毒素形式存在,昆虫取食后,在消化道被活化,与肠道上特异性结合蛋白结合,使 ICP 全部或部分嵌合于细胞膜上,产生孔道,昆虫幼虫停止进食,最终死亡;生物素绑定蛋白基因通过表达抗生物素蛋白或卵白素蛋白提高苹果的抗虫性。4,3 开花相关基因

  果树童期长的特点在很大程度上延长了果树的育种周期 开花相关基因的研究,为缩短果树的童期,从而缩短育种周期提供了分子理论基础 目前已经从多种植物上克隆到

  MdTFL、BpMADS4等基因,并应用到苹果的遗传转化中 MdTFL 基因是从苹果(Malus × domesti-ca Borkh.)中克隆得到,该基因与拟南芥中的 TERMINALFLOWER1(TFL1)基因为同源基因,可以抑制花的分生组织形成 Kotoda 等向苹果中转入反义 MdTFL 基因可以抑制MdTFL 的表达,从而使苹果可以在嫁接8 ~ 15 个月后就可以开花 BpMADS4 是从欧洲白桦(Betula pendula)中克隆出的MADS-box 家族基因,其主要在欧洲白桦的花序 茎尖和根尖中表达,作用主要是促进早起花的形成 Flachowsky 等将BpMADS4 基因转入苹果 Pinova 中,3 ~ 4 个月就可以开花

  4,4 矮化基因

  矮化栽培因具有结果早、品质好、管理方便、品种更新快等优点,已成为果树业发展的趋势。由于果树有很长的生命周期,使得传统的育种方法选育矮化品种非常缓慢,利用基因工程技术可以大大提高矮化品种培育的速率。目前已经从病原体农杆菌中鉴定和克隆出一些与矮化有关的基因,在苹果中得到应用的主要有 rolA、rolC、phyB、gai基因等 Holefors 等及Zhu 等将rolA 基因转入砧木M26,获得的转化植株与对照相比,树体矮小,节间缩短,树叶面积减小。Holefors 等获得的转化植株叶、根干重均降低,Zhu 等获得的转化植株的根明显缩短。Igarashi 等将从拟南芥中克隆出的 rolC 基因转入 Marubakaidou 砧木,获得的转基因植株有1 ~ 3 个拷贝的 rolC 基因整合到基因组 DNA 中,转基因植株的节间缩短、叶片面积减小、顶端优势减弱。2000 年 Hole-fors 等将拟南芥 phyB(光

  敏色素 B)基因导入 M26 获得13个株系的转基因植株,该基因在转基因植物体内过量表达。其中9 个株系主干明显缩短,13 个株系的茎、根和植物体干重均降低。此外,Zhu 等将从拟南芥中克隆出的 gai 基因导入苹果砧木 A2 以及栽培品种 Gravenstein 和

  McIntosh 中,得到的转化植株大部分表现出矮化特征,同时还表现出节间距减小、节数变少等表型特征。转基因植株的矮化使得节数变少,但是否可以缩短童期尚未见报道

促进生根基因

  受基因型的影响,有些苹果砧木采用扦插和压条繁殖时,生根极其困难 利用转基因技术在一定程度上可以解决这一问题 Welander 等将 rolB 基因导入砧木 M26 中,发现与对照相比,转基因植株根系对生长素的敏感性增强,生根能力也相应提高 Igarashi 等将从拟南芥中克隆出的 rolC 基因转入 Marubakaidou 砧木,获得的转基因植株除了表现植株矮化性状外,其生根能力也有了相应提高

抗除草剂基因

  随着生物技术的发展,现在已经有能力通过遗传工程的方法来培育耐除草剂的作物品种 根据抗性机理不同,目前耐除草剂的基因工程主要有 2 种策略: ①修饰除草剂作用的靶蛋白,使其对除草剂不敏感,或促使其过量表达以使植物吸收除草剂后仍能进行正常代谢;②引入酶或酶系统,在除草剂发生作用前将其降解或解毒 ALS 的靶位点突变体在自然界中普遍存在,人们已在细菌 酵母 植物细胞培养物及种植于田间的作物中发现了这种突变酶将来自拟南芥的 als 基因,通过农杆菌介导转化皇家嘎拉苹果获得转基因植株在后续研究中,获得的种子用60 mg /L 绿贫隆(Glean)喷洒检测其抗性,发现 als 基因按1∶1 分离比例稳定遗传。

  从链霉菌中分离出的编码乙酰 CoA 转移酶的基因被称为 bar 基因 乙酰 CoA 转移酶具有使除草剂草丁膦代谢失活的作用 其作用机制在于在乙酰 CoA 存在的情况下,乙酰 CoA 转移酶催化乙酰 CoA 与草丁膦的游离氨基结合,从而使草丁膦失去除草剂的活性Dolgov 等把 bar 基因导入苹果砧木 No. 545 并获得抗除草剂转基因植株

耐贮藏基因

  苹果在贮藏过程中,由于果实熟化过程难以控制,常常导致过熟 腐烂,造成极大的经济损失 常规育种方法选育耐贮藏苹果品种周期太长 效果不理想,不能满足生产的需求近年来,随着基因工程技术的发展,利用基因工程技术改良苹果贮藏性已经有了一定的成效

  果实耐贮藏基因的研究主要集中在乙烯的合成途径相关基因的研究上,乙烯在对苹果果实的成熟转变扮演着重要角色 Pesis 等向苹果绿袖中转入反义 ACCS 和 ACCO 基因,然后将转基因苹果果实0 ℃冷藏3 个月,之后转入20 ℃环境中存放 结果表明,与未转化的苹果果实相比,转基因苹果的乙烯含量明显降低,转基因苹果对苹果贮藏过程中容易出现的虎皮病和苦陷病抑制效果不明显

调控基因

  近20 年来利用转基因技术进行苹果的遗传改良取得了很大进展,外源基因涉及到改良植物性状的目的基因范围也越来越广 很多转基因植株的性状在一定程度上得到了改良,但外源基因的表达强度不够,其效果尚不尽人意 2000 年 Gittins 等提出遗传改良作物转化基因的表达受限于组织特异性的编码活性 他们将非同源的SSU RBCS3CP SRS1P 和CaMV35S 启动子,以及GUSA 标记基因连接转入到苹果绿袖中,研究了不同启动子启动的GUSA 在绿袖中不同组织的表达状况 研究表明,SSU 启动子首先在苹果的绿色营养组织中起作用;在根部 RBCS3C启动子活性要远远高于 SRS1 启动子;SRS1 启动子的活性在很大程度上依赖于光照 2001 年 Gittins 等又对 Bras-sica napus extA 启动子的调控作用作了研究,结果表明该启动子在苹果茎段中的调控作用非常明显 以上结果表明,不同基

  因在不同组织中有特异的启动方式,因此,改进调控基因表达的特异启动子有助于提高目的基因的表达强度和减少表达蛋白的损耗。存在问题及前景展望

安全的转基因系统

  目前由于转基因技术的一些限制性因素,在转基因过程中一般要与目的基因一起转入 1个筛选标记基因 常用的筛选标记基因为抗生素抗性基因和抗除草剂基因,大多数的筛选标记基因在转化后也同时存在于转基因植物中,因此引起了转基因植物安全性问题的讨论 如人们担心抗生素抗性基因有可能从摄入的转基因食物转移到人体内,从而使人体的消化道内产生抗性菌株;另外,除草剂抗性基因也有可能在野外引起基因扩散,造成 超级杂草 的出现 尽管目前并没有证据证明其危害性,但公众对安全性的关注大大推迟了转基因作物的商品化和市场运作,从而阻碍了转基因研究的发展 因此,探索一种新的无抗性筛选标记的转化系统,可以更好地激励植物基因工程技术尽快地应用到生产之中

外源基因表达强度不够

  尽管目前通过转基因方式获得了很多各种苹果改良转基因植株,如苹果的抗病虫害转基因 虽然离体检测其抗性有了一定程度的提高,但其效果并不能达到人们所期望的目标 所以应该从基因表达调控以及特异性表达的启动子方面进行研究,以尽可能地提高目的基因的表达强度

品种改良基因型范围太窄

  苹果转基因研究主要集中在抗病虫害方面,而抗病基因研究又主要集中在抗火疫病方面,抗其他病害的基因很少有报道;以提高果实品质及抗逆性如抗寒 抗盐碱等为目的的转基因研究也不多见

  References

[1]JAMES D J,PASSEY A J,BARBARA D J,et al. Genetic transformation ofapple(Malus pumila Mill)using a disarmed Ti-binary vector[J].PlantCell Rep,1989,7: 658 -661.

[2]MAHESWARAN G,WELANDER M,HUTCHINSON J F,et al. Transforma-tion of apple rootstock M26 with Agrobacterium tumefaciens[J] .J PlantPhysiol,1992,139(5): 560 -568.

[3]SRISKANDARAJAH S,GOODWIN P B,SPEIRS J. Genetic transformationof apple scion cultivar‘Delicious’via Agrobacterium tumefaciens[J].Plant Cell Tiss Org,1994, 36(3): 317 -329.

[4]JIA L Y,COHEN D,ATKINSON R,et al. Regeneration of transgenic plantsfrom the commercial apple cultivar Royal Gala[ J] . Plant Cell Rep,1995,14(7): 407 -412.

[5]SCHAART J G,PUITE K J,KOLOVA L,et al. Some methodological as-pects of apple transformation by Agrobacterium[ J].Euphytica, 1995,85(1 /3): 131 -134.

[6]PUITE K J,SCHAART J G. Genetic modification of the commercial applecultivars Gala,Golden Delicious and Elstar via an Agrobacterium tumefa-ciens-mediated transformation method[J].Plant Sci,1996,119(1 /2): 125-133.

[7]BONDT A D,EGGERMONT K,PENNINCKX I,et al. Agrobacterium medi-ated transformation of apple(Malus domestica Borkh): an assessment offactors affecting regeneration of transgenic plant[J].Plant Cell Rep,1996,15: 549 -554.

[8]裴东,田颖川,刘群禄等.苹果叶片再生的改进及抗虫基因植株的获得[J].河北农业大学学报,1996,19(4): 23 -27. [9]BOLAR J P,BROWN S K,NORELLI J L,et affecting the trans-formation of‘Marshall McIntosh’apple by Agrobacterium tumefaciens[J].Plant Cell Tiss Org,1998,55(1): 31 -38.

[10]ZHU L H,HOLEFORS A,AHLMAN A,et al.Transformation of the applerootstock M. 9 /29 with the rol B gene and its influence on rooting andgrowth[J].Plant Sci,2001,160(3): 433 -439.

[11]SRISKANDDARAJAH S,GOODWIN P.Coditioning promotes regenerationand transformation in apple leaf explants[J]. Plant Cell Tiss Org,1998,53(1): 1 -11.

[12]SEDIRA M,HOLEFORS A,WELANDER M.Protocol for transformation ofthe apple rootstock Jork 9 with the rolB gene and its influence on rooting[ J].Plant Cell Rep,2001,20(6): 517 -524.

[13]WILSON F M,JAMES D J.Regeneration and transformation of the premi-er UK apple(Malus × pumila Mill.)cultivar Queen Cox[ J].The Journalof Horticultural Science and Biotechnology,2003,78: 656 -662.

[14]KANAMARU N,ITO Y,KOMORI S,et al. Transgenic apple transformedby sorbitol-6-phosphate dehydrogenase cDNA:Switch between sorbitoland sucrose supply due to its gene expression[J].Plant Sci,2004,167(1): 55 -61.

[15]程家胜,鄂超苏,田颖川等.转Bt 抗虫基因苹果植株的再生[J].中国果树,1994(4): 14 -15.

[16]WELANDER M,PAWLICKI N,HOLEFORS A,et al.Genetic transforma-tion of the apple rootstock M26 with the rolB gene and its influence onrooting[ J].Journal of Plant Physiology,1998,53: 371 -380

[17]HANKE V,HILLER I,KLOTSCHE G,et al.Transformation in apple forincreased disease resisitance[J].Acta Hort,2000,538: 611 -616.

[18]BOLAR J P,NORELLI J L,WONG K W,et al. Expression of endochiti-nase from Trichoderma harzianum in transgenic apple increases resistanceto apple scab and reduces vigor[J].Phytopathology,2000,90(1): 72 -77.

[19]HILY J M,LIU Z A.simple and sensitive high-throughput GFP screeningin woody and herbaceous plants[J].Plant Cell Rep,2009,28(3): 493 -501.

[20]NORELLI J,ALDWINCKLE H,DESET FANO-BELTR N L,et al.In-creasing the fire blight resistance of apple by transformation with genesencoding antibacterial proteins[ J].Acta Hort,1993,338: 385 -386.

[21]NORELLI J L,MILLS J Z,JENSEN L A,et al. Genetic engineering of ap-ple for increased resistance to fireblight[J] . Acta Hort,1998,484: 541 -546.

[22]ABDUL-KADER A M,NORELLI J L,ALDWINKLE H S,et al. Evaluationof the hrpn gene for increasing resistance to fire blight in transgenic apple[ J].Acta Hort,1999,489: 247 -250.

[23]LIU Q,INGERSOLL J,OWENS L,et al. Response of transgenic Royal Ga-la apple(Malus domestica Borkh.)shoots carrying a modified cecropinMB39 gene,to Erwinia amylovora[J].Plant Cell Rep,2001,20:306 -312.

[24]FLACHOWSKY H,PEIL A,ROLLINS J,et fire blight resist-ance in transgenic apple lines by constitutive overexpression of the mbr4gene of Malus baccata[ J].Acta Hort,2008.793: 287 -291.

[25]徐凌飞,王贵章,梁东,等.抗真菌病害基因转化苹果的研究[J].西北农林科技大学学报: 自然科学版,2007,35(9): 127 -131.

[26]SZANKOWSKI I,BRIVIBA K,FLESCHHUT J,et al. Transformation ofapple(Malus domestica Borkh.)with the stilbene synthase gene fromgrapevine(Vitis vinifera L.)and a PGIP gene from kiwi(Actinidia deli-ciosa)[ J].Plant Cell Rep,2003,22(2): 141 -149.

[27]FAIZE M,SOURICE S,DUPUIS F,et al. Expression of wheat puroindo-line-b reduces scab susceptibility in transgenic apple(Malus × domesticaBorkh.)[J].Plant Sci,2004,167(2): 347 -354.

[28]达克东,崔德才,张松,等.超强表达豇豆胰蛋白酶抑制剂基因(CpTI)转化苹果的研究[J] .园艺学报,2001,28(1): 57 -58.

[29]MARKWICK N P,DOCHERTY L C,PHUNG M M,et al. Transgenic to-bacco and apple plants expressing biotin-binding proteins are resistant totwo cosmopolitan insect pests,potato tuber moth and lightbrown applemoth,respectively[J]. Transgenic Res,2003,12(6): 671 -681.

[30]KOTODA N,IWANAMI H,TAKAHASHI S,et al. Antisense expression ofMdTFL1,a TFL1-like gene,reduces the juvenile phase in apple[J].J AmSoc Hortic Sci,2006, 131: 74 -81.

[31]ELO A,LEMMETYINEN J,TURUNEN M L,et al. Three MADS-boxgenes similar to APETALA1 and FRUITFULL from silver brich(Betulapendula)[J].Physiol Plant,2001,112(1): 95 -103.

[32]FLACHOWSKY H,PEIL A,SOPANEN T,et al. Overexpression of Bp-MADS4 from silver birch(Betula pendula Roth.)induces early-floweringin apple(Malus x domestica Borkh.)[J] .Plant Breeding,2007,126(2):137 -145.

[33]HOLEFORS A,XUE Z T,WELANDER M. Transformation of the apple ro-otstock M26 with the rolA gene and its influence on growth[ J] . Plant Sci,1998,136(1): 69 -78.

[34]ZHU L H,WELANDER M. Growth characteristics of apple cultivar Grav-enstein plants grafted onto the transformed rootstock M26 with rolA androlB genes under non-limiting nutrient conditions[J]. Plant Sci,1999,147(1): 75 -80.

[35]IGARASHI M,OGASAWARA H,HATSUYAMA Y,et al. Introduction ofrolC into Marubakaidou[ Malus prunifolia Borkh. var. ringo Asami Mo 84-A]apple rootstock via Agrobacterium tumefaciens[J].Plant Sci,2002,16(3): 463 -473. [36]HOLEFORS A,XUE Z T,ZHU L H,et al. The Arabidopsis phytochrome Bgene influences growth of the apple rootstock M26[J] . Plant Cell Rep,2000,19(11): 1049 -1056.

[37]ZHU L H,LI X Y,WELANDER M. Overexpression of the Arabidopsis gaigene in apple significantly reduces plant size[J]. Plant Cell Rep,2008,27(2): 289 -296.

[38]WELANDER M,PAWLICKI N,HOLEFORS A,et al. Genetic transforma-tion of the apple rootstock M26 with the rolB gene and its influence onrooting[J] .Plant Physiol,1998,153(3 /4): 371 -380.

[39]王关林,方宏筠.植物基因工程[M].北京: 科学出版社,2002: 56.

[40]YAO J L,COHEN D,ATKNSON R,et al. Regeneration of transgenicplants from the commercial apple cultivar Royal Gala[J] . Plant Cell Rep 1995,14: 407 -412.

中国烟草物流现状与展望研究及对策[范文模版]3

  中国烟草行业物流技术发展历程

  第一阶段:引进时期,以国外物流技术为主导,代表项目是瑞士Swisslog公司承建的上海海烟物流中心,是我国规模最大、自动化程度最高的物流配送中心(福州物流)

  第二阶段:合作时期,国内供应商集成国外产品,代表项目是昆船公司成功集成了进口的堆垛机、机器人、件烟高速分拣系统等设备,建成的深圳烟草物流配送中心。

  第三阶段:模仿时期,代表项目是白沙集团卷烟配送中心。除配置了托盘和件烟为存储单元的高架立体仓库以外,还采用件烟自动补货技术,将通道式分拣机、塔式分拣机和电子标签分拣货架组成了全国产设备的条烟分拣系统。

  第四阶段:自主时期,在此阶段涌现出一批勇于自主创新的国内供应商,代表项目是北京卷烟配送中心和杭州卷烟配送中心,都以建造采用全新设计理念的高效率全自动分拣系统为目标,但结果证明,系统实际运行效果与设计能力还有相当的差距。

  第五阶段:实用时期,在追求高自动化受到挫折后,烟草流通业回归到了最初机械加手工的时期,设计方案都十分谨慎,要求简单实用,代表项目是重庆卷烟配送中心。在此阶段,国家烟草专卖局下发了《关于构建行业现代物流系统的指导意见》,明确了物流系统指导思想、总体目标以及具体的措施和要求。

  第六阶段:优化时期,烟草物流从人工搬运、自然堆放,到使用高架立体仓库存储;由手工加机械的电子标签拣选系统,到实行了自动分拣、自动包装,物流技术的应用水平快速提高。同时,烟草流通业借助外力,如专业的咨询公司对其建设规划、定位和总体目标进行系统、科学的分析论证,加上国家烟草专卖局严格进行项目审批,规范了物流系统的建设。

  详情请参见:www..com